
Qt-DAB 3.7∗,

User’s guide for version 3.7, (revised version)

Jan van Katwijk, Lazy Chair Computing
The Netherlands

December 7, 2020

∗©J.vanKatwijk. I can be reached at J.vanKatwijk at gmail dot com

1



Contents

1 Introduction 3
1.1 Related software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The GUI and GUI elements 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Control for channel and service . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Displaying information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Control elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Colors and coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 EPG Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Command line parameters and the ini file 18
3.1 Command line parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Settings in the ”.ini” file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Supported input devices 20
4.1 The SDRplay RSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 The AIRSpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 The hackrf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 The LimeSDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 The RTLSDR stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 The Pluto device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Support for Soapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 File input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Configuring and building an executable 26
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 What is there to configure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Preparing the build: loading libraries . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Finally: building an executable . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Adding support for a device 33
6.1 The Qt-DAB device interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 What is needed for another device . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Linking or loading of device libraries . . . . . . . . . . . . . . . . . . . . . . . . 35

7 dabMini 36
7.1 Why a dabMini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 The GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 dabMini on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 dabMini on x64 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Building an executable on Linux and RPI . . . . . . . . . . . . . . . . . . . . . 37

8 Acknowledgements 38

2



1 Introduction

Qt-DAB is an advanced program for decoding terrestrial DAB transmissions. Qt-DAB, a
program with a GUI, is designed to run on both Linux (x64) computers, on RPI 2 and up
running Linux, and is cross compiled for Windows1.

For Linux (x64) a so-called appImage is available, a kind of container, an executable file
that contains next to the executable program the libraries needed to run.

For Windows, an installer is available that will install the executable together with the
required libraries.

These precompiled versions can be found in the releases section of the repository for Qt-
DAB (https://github.com/JvanKatwijk/qt-dab/releases).

For creating an executable on an RPI 2 or higher or any other Linux system, section 5 of
this report contains a pretty detailed description with scripts for Debian and Ubuntu.

Qt-DAB is implemented in C++, with extensive use of Qt for its graphical appearance.
Furthermore, it uses a number of existing open source libraries, such as fftw, libsndfile, libsam-
plerate, libusb, and Qt-DAB is itself open source, available under the Gnu GPL V2.

The sourcetree for Qt-DAB contains - obviously - sources to generate an executable for
Qt-DAB. It actually contains subdirectories for three decoder versions (next to a number of
shared subdirectories), dab-maxi, dab-mini and dab-2.

• dab-maxi contains sources specific to the Qt-DAB program, the configuration files (i.e.
a ”.pro” file and a ”CMakeLists.txt” file) and the files needed for having an appImage
created for Qt-DAB when uploaded to git (through Travis).

• dab-mini contains sources, with configuration files and with a description on how to
create an executable version with a minimal interface, i.e. dabMini.

• dab-2 contains sources for an experimental version, a version with - roughly - the same
functionality as Qt-DAB, however with a completely different front end architecture. It is
experimental, meaning that from time to time the dab-2 specific parts are not compatible
with the shared sources and there is no official support.

The dabMini version is described in section 7, that section includes a description of how to
build an executable. The dab-2 program is used by me for experimenting, it is not further
described here.

The structure of this guide is simple, in section 2 the GUI and GUI widgets for the Qt-DAB
program are discussed, in section 3 command line parameters and user provided settings in
the ini file (configuration settings) for the Qt-DAB program are discussed, in section 4 the
supported devices and their control widgets for the Qt-DAB program are briefly discussed.

1Disclaimer: While Windows is most likely a marvellous operating system, I develop the software under
Linux, and cross compile it for Windows. It turns out that in some cases, in some situations, the software -
running under Windows - shows erroneous, or at least different, behaviour not found when running under Linux.
Developing under Linux is easy: when something goes wrong (it happens), it is fairly easy to detect the culprit
and take appropriate actions, for Windows this is (completely) different. So, while I will continue to produce
- from time to time - a Windows installer for Qt-DAB and for dabMini, no garantee about their functioning
under Windows is given.

3



In section 5, a description is given on how to configure and build an executable for Qt-
DAB. First the configuration parameters are briefly discussed, a description is given of which
libraries have to be installed on a Linux system, and what to do with either cmake or qmake.

In section 6 the device interface as used in Qt-DAB is discussed and an explanation is given
how to interface another device to the system configuration (note that the device interfaces for
dabMini and dab-2 are - slightly - different).

As said, in section 7, a brief description is given of the dabMini program, a decoder version
built on the same set of sources but with a minimal interface.

1.1 Related software

Based on the Qt-DAB software a number of related programs is (being) developed. Of course
dabMini is one of them, some others are mentioned below, each of these has a separate repos-
itory on Github.

dab-cmdline is set up as a library, with a number of command line based example programs.
The command line is simple, a channel, a servicename and some gain settings are passed as
parameter, e.g.

dab-sdrplay-x -M 1 -B "BAND III" -C 12C -P "Radio 4" -G 80 -A default

See https://github.com/JvanKatwijk/dab-cmdlin.

terminal-DAB-xxx is a program to run a DAB decoder, without using a complex GUI and
accompanying libraries as Qt. As can be seen on the picture in figure 1, available services are
listed on the command terminal (using the Curses library). Indicating a service in the list for
selection is by using the up or down keys. The next or previous channels can be selected using
the plus resp. minus keys. To keep things simple, support for the device is compiled in.

Figure 1: Qt-DAB: the terminal-DAB window

As configuration option, slides, passed as Program Associated Data (PAD), can be made
visible in a separate widget. See https://github.com/JvanKatwijk/terminal-DAB-xxx.

4



dab2fm-pluto is a program, written to exercise the transmission possibilities of the Adalm
pluto device. The program is a - more or less regular - DAB decoder, with as backend an FM
modulator, feeding the transmitter side of the Pluto. The command line takes a channel, a
service name, some gain setting parameters and a transmission frequency as parameter.

The decoder will transmit the audio of the selected service as stereo FM signal on the
selected frequency. The text of the dynamic label in the transmission of the selected service is
added to the FM signal as an RDS signal. See https://github.com/JvanKatwijk/dab2fm-pluto.

dabScanner and channelScanner are programs, developed for scanning the band. dab-
Scanner is a GUI driven program to continuously scan the band and record information on
what is received (https://github.com/JvanKatwijk/dab-scanner)2.

channelScanner is the command line driven little brother to run a scan over a set of spec-
ified channels. If a channel contains (detectable) DAB data, a record will be written with a
description of the contents of the ensemble, transmitted over that channel. Furthermore, the
command line based version has as command line option to dump the raw input of the channels
containing DAB data onto a file in the xml format (https://github.com/JvanKatwijk/channel-
scanner).

2 The GUI and GUI elements

2.1 Introduction

When playing around with DAB I ususally want to be in full control, and I am (most of the
time) interested in characteristics of the DAB signal. The GUI of Qt-DAB reflects this, there
is an abundant amount of buttons, selectors and displays as was shown on the front page.

Figure 2: Qt-DAB: the main widget of the GUI

2Note that almost anything that can be done with dabScanner can be done using Qt-DAB as well

5



To keep things manageable, the GUI is built up around a central widget (figure 2), a widget
that is shown permanently3, accompanied by a number of other widgets that might - or might
not - be made visible, depending on user’s settings.

This main widget can be thought to consist of three elements:

• the left part, handling control for channel and service;

• the top right part displaying information;

• the bottom right part, the various controls.

Note that the control for the selected input device is on a separate, device specific control
widget.

2.2 Control for channel and service

Figure 3: Qt-DAB, channel and service selection

Central in the left part of the main widget is the list of services, this list shows the services
detected in the currently selected channel4. Selecting a service is by moving the cursor to the
name of a service, and clicking with the left mouse button.

Below the list of services (see figure 3) there is (from top to bottom)

• the combobox for the presets. A preset can be added to this list by clicking with the right
mouse button on the name of the selected service in the service list5. Clicking with the left

3closing this window will terminate the program execution
4Note that the order of this list - either alfabetically, by service Id, or by the number of the subchannel - can

be set in the ”.ini” file and changed in the configuration window
5Clicking with the right mouse button on the name of a service that is not the selected one, will cause a

small widget to be shown with some information on the service pointed to

6



mouse button on the entry in the preset list instructs the software to select the channel,
wait until the services of the channel are visible, and finally, select the service. Removing
an element from the list is by putting the cursor on the name of the service in the list of
presets, and pressing the shift and delete button on the keyboard simultaneously.

• a previous (−) and a next (+) service button. With these button one can easily scan
through the list of services.

• the combobox for channel selection. While (regular) DAB transmissions are in Band III,
configuration provides options to select channels in the L Band or channels in a user
defined band. The channel names are the elements in the combobox.

• a previous (−) and a next (+) channel button, making it easy to scan through the channels
in the selected band.

Note that the software will ”remember” the selected channel and service, these values will be
saved, and on program start up, these values will be taken as start value.

Note furthermore that the software will ”remember” the gain settings for each channel
used. On selecting a channel a next time - either explicitly or implicitly through selecting a
preset service - the gain setting as it was is restored6.

2.3 Displaying information

Figure 4: Qt-DAB, system wide information

Some general information is displayed in the top half of the right side of the main widget,
see figure 4. The top line gives three (four) elements

• when muting, the remaining muting time in seconds is displayed. If audio is not muted,
the number display is shown. The picture shows that muting is on.

• the run time, the amount of time the program is running;

• the current time, this time is taken from the time encoding in the transmission. When
playing a recording, the time found in the recording is shown rather than the current
time of listening;

6A setting in the ini file exists to ignore previous settings

7



• the copyright symbol. Touching this with the cursor when the widget is in focus, will
reveal (a.o) the time and date the executable was built.

Below this line, there are boxes with labels:

• SNR, the measured signal/noise ratio. SNR is computed as the overall strength of the
signal compared to the strength during transmission of the NULL period of DAB frames;

• Frequency, the frequency, in MHz, of the selected channel;

• Offset, the frequency correction applied to the signal;

• CPU load, the overall CPU load, i.e. not only for running the program.

Below these - system related - pieces, there is a line with:

• the sync flag, if green, time synchronization is OK;

• a progressbar, indicating the quality of decoding of the data in the FIC (Fast Information
Channel). A value less than 100 percent here usually indicates a poor reception.

• if an EPG decoder is running in the background, a yellow field with the text ”EPG” is
shown.

• if an alarm is set, a small red field with the text ”Alarm” is shown.

The remaining part of the widget is devoted to describing the name of the ensemble,
displayed together with its ID, the name of the selected service and the dynamic label.

The two numbers preceded by ”Est:” give - if shown - an estimate of the transmitter
identification being received. As is well known, DAB is transmitted using a Single Frequency
Network, a network of transmitters, all transmitting the same ensemble in the same channel,
so one might (probably will) receive data from more than one of the transmitters at the same
time. Each transmitter in the network encodes a unique identification in the transmitted signal,
the Transmitter Identification Information (TII), consisting of two numbers, one to identify
the network, one for the specific transmitter in that network. During reception of a channel,
the indication that is shown may change. Always, the TII of the strongest signal received is
shown.

2.4 Control elements

Figure 5: Qt-DAB: control elements

8



Most controls are grouped in the lower right half of the main widget, displayed in figure
5. The control contains 12 push buttons and 2 comboboxes, briefly discussed, in the order
from left to right, top to bottom (three additional buttons related to the audio output are now
located on the widget describing the service details).

Content button Touching the button labeled Content will instruct the software to write
a description of the content of the current ensemble to a file. First, a menu will be shown

Figure 6: Qt-DAB: content

with which the filename can be selected. The file is written in ASCII and is readable by e.g.
LibreOffice Calc or similar programs (see figure 6).

Detail button Touching the button labeled Detail will instruct the software to display
detailed data on the selected service on a separate widget. Touching the button again will hide
the widget.

The technical Data widget - figure 7 - shows all kinds of technical details of the seleccted
service.

The technical Data widget shows the name and the identification of the service, it shows
where the data of the service is located in the input stream, it shows the protection of the data
against errors, whether it is a DAB+ or a DAB transmission, and - if available - it shows the
type of the service.

The widget contains three buttons:

• a frameDump button. Touching the button will show a menu to select a filename. The
AAC frames, with the encoded audio of the selected service will be written into the file.
The format is such that a program as e.g. VLC can process the data further. Writing
continues until either the button is touched again or another service of channel is selected.

• an audioDump button. Touching the button will show a menu to select a filename. The
PCM output of the selected audio service will be written into the file. Writing continues

9



Figure 7: Service details

until either the button is touched again or another service of channel is selected.

• a mute button. Based on user suggestion, a mute button was added with an obvious
function. Touching the mute button will mute the audio output, for at most a time
specified in the ”.ini” file. The time - in minutes - can be set in the configuration widget.
Touching the button while muting, will unmute the audio output.

For both the frame dump as the audio dump button, a suggestion will be given for the filename
to use, containing the service name and time of recording.

The number labeled rs corrections tells how many corrections on the incoming DAB+
frames were needed (and could be performed) by the Reed-Solomon error recovery per 100
frames. Note that the maximum amount of errors that can be corrected per DAB+frame is 5,
if there are more than 5 errors, that frame is erroneous and not processed further.

A ”stereo” indicator is back, now where it belongs, in the widget with the description of
the service.

If the transmission of the service is also on FM, an FM frequency will be shown, as depicted
on the left widget.

For DAB+ services three progress bars are shown, in case all three show a value of 100
percent, decoding is 100 percent. If less, then there are some issues that could not be resolved
(the top one shows the successrate of DAB+ frames passing a first test, the middle one the
successrate of the Reed-Solomon error recovery on the frames passing the first test, and the
bottom one tells the successrate of the AAC decoding).

Below these progress indicators, a line will indicate whether or not the service carries a
MOT label. If it is, the picture will be displayed. The picture will be displayed by default on
a separate widget, however, a setting in the configuration widget, the setting being saved in

10



the ”.ini” file, will cause the picture to be shown on a label at the bottom the technical data
widget.

If the software was able to decode EPG data, a button at the top is made visible with
which the time table of the selected service can be made visible.

Reset button Touching the button labeled reset will, as the name suggests, instruct the
software to do a reset on the selected channel, i.e. synchronization will be done again and a
services, extracted from the incoming samples, is built up - if any.

Figure 8: Fragment of the scan output

Scan button Touching the button labeled Scan will instruct the software to perform a scan.
The configuration widget contains a combobox that is used to set the way the scanning occurs:

• a single scan will just perform - as the name suggests - a single scan over some channels
in the current band. Starting at the first channel, stopping at the last one.

• a scan to data will start scanning with the next to the current channel and continue
scanning until a channel is reached that contains DAB data.

• a continuous scan is like the single scan, but will not stop at reaching the last channel
in the band but will scan the band continuously until the button is touched again.

In case a full single band scan is done, the results are shown, see figure 8 (i.e. the names of
the ensembles found, names of services and some technical data on the services).

In case a continuous band scan is done, a summary will be displayedm one line per ensemble
found.

On touching the button, a widget is shown with the question whether or not to save the
result. If saving is selected, a menu will be shown with which a filename can be selected (a
suggestion for a filename, containing the date and time is given). The result will then be saved
in a text file, that can be processed by e.g. LibreOffice Calc. The format of the saved data
is the same as the format of the data saved when touching the content button, and the text
shown is a subset of that.

11



Since for quite some channels it is known on beforehand that they do not contain data,
a skipTable was implemented, a table which can be used to record channels that are to be
skipped when scanning. The entry to the skipTable is also to be found on the configuration
widget. A ddefault skipTable is maintained in the ”.ini” file.

When DX-ing, one might need different skipTables, e.g. one for each direction of the
reception. As an addition, the configursation widget contains a button skipFile. When touched
a file section menu appears with one can select a skipFile. If the file does not exist it will be
created. If one cancels the file selection the default skipTable will be used.

device button Touching the button labeled device will hide (or show) the widget for the
device control.

Figure 9: Correlation result

corr-result button Touching the button labeled corr-result will instruct the software to
display a separate widget, making the correlation result for time synchronization visible. As
mentioned earlier, DAB is transmitted in a Single Frequency Network and a receiver may re-
ceive data from more than one transmitter. The signal from the transmitter with the strongest
signal (i.e. the highest correlation value) is the one used for demodulation and decoding.

The X-axis indicates the sample numbers, ”normal” synchronization happens with the peak
on sample 504. The width of the X-axis, i.e. the amount of samples taken into account, is
taken from the ”.ini” file, and can be set from within the configuration widget.

The widget as depicted shows that there are (at least) three transmitters in the neighbor-
hood. The second strongest one arrives app 40 samples before the strongest one. Since there
are 2048000 samples/second, one sees that the second strongest arrives app 20 microseconds
before the other.

Touching the button again will cause the widget to disappear.

Spectrum button Touching the button labeled Spectrum will instruct the software to dis-
play a separate widget, showing the spectrum of the incoming signal, showing the constellation
of the received and decoded signal and showing a measure of the quality of the signal. The
picture, figure 10 shows the spectrum of a synthetic signal, a signal without channel distur-
bances. The picture in figure 11 shows a realistic, reasonable though not excellent signal. As
can be seen, ideally the constellation shows as four dots, one in each quadrant, the picture in

12



Figure 10: Almost ideal signal

Figure 11: Spectrum of a real signal

figure 11 shows a more cloud like structure. Of course, the more the constellation looks like a
single cloud, the poorer the signal.

Below the constellation window, two numbers are shown. The quality indicator shows -
according to some metrics - the quality of the constellation in a range from 0 .. 5. The clock
error tells the amount of samples too many or too few in processing 10 DAB frames (a DAB
frame is built up from 196608 samples with a rate of 2048000, so 10 DAB frames take slightly
less than one second).

As with the other buttons, touching the button again will cause the widget to disappear.

TII button Touching the button labeled TII will instruct the software to display a widget
(figure 12) with the spectrum of the null period from the start of the DAB frames. The TII data
(Transmitter Identification Information) is extracted from the spectrum of these null periods.
The line at the bottom of the widget displays the (mainId, subId) combination(s) found as
giving the strongest signal. On touching the button again the widget will disappear.

The combobox labeled default The combobox labeled default in the picture is for selecting
an audio channel. What the combobox shows depends on the (sound card of the) computer
where the program is running. In most cases default will do.

The combobox labeled sdrplay The combobox labeled sdrplay in the picture is for se-
lecting a device. Depending on the configuration of the software device names will show here.

13



Figure 12: TII spectrum

list button The button labeled list instructs the software to list the elements in the history
file. Inspired by my car radio a list is maintained of all services ever selected. Touching the
list button again will hide the list (touching the list with the right mouse button will clear it).

Raw dump button Touching the button labeled Raw dump will instruct the software to
dump the raw input samples into a file. First, a menu is presented for selecting a filename. The
menu will suggest a filename of the form ”device name-channel-date.sdr” (date as derived from
the DAB stream). Touching the button again will stop dumping and the file will be closed.
The resulting file is in PCM format, with a rate of 2048000, 2 channels and data represented
as short ints. Note that recorded files will be pretty large, per second 2048000 I/Q samples
(each I/Q sample represented as two short ints, i.e. 2 * 2 bytes) are written.

Figure 13: Development of SNR

snrView button Especially when looking at the performance of different antennas, the
development of the SNR over time might be interesting (see figure 14). The snrView button
makes a widget (in)visible that displays the SNR over time. The SNR here is computed by
looking at the (amplitude of the) signal over the data blocks in a DAB frame and the (amplitude
of the) signal in the null period of the DAB frame. A configuration option exists - the button

14



as shown here - with which the snr values can be stored in a file. A separate utility exists for
making the recording visible. (Per 2 DAB frames one computation is performed, about 312
per minute)

The length of the period (as well as the height of the display) can be chosen in the config-
uration widget. Working in the ”lazy chair”, I am only using a simple whip antenna, the snr
shown is not that spectacular, but in directing my other antenna it was quite useful.

config Button Settings can be found in the ”.ini” file. Many of the settings are automatically
stored (e.g. the selected device, the selected channel, etc etc), some are only read by the Qt-
DAB program, but can be edited by a user. Of course, editing a configuration file is not always
fun, and it does not always make sense to edit the ”.ini” file while the program is running.
That is why I added a ”config” button. The button controls the visibility of a widget with a
few controls for settings in the ”.ini” file. The Qt-DAB program has been adapted such that
modifications to the settings are applied (almost) instantaneously.

Figure 14: the configuration widget

The configuration widget supports:

• setting the mute time, the time - in minutes - used to mute the audio is the mute button
is set to mute;

• setting the switchDelay time, the time used to detect DAB data in a channel when
selected;

• setting the plotLength in units of 100 samples, i.e. the number of samples shown in the
correlation widget;

• settings for the height and length of the snrView widget;

15



• selecting the scan mode. While the default way to scan is to make a single scan over
all channels in a given band, an alternative is to scan, starting with the successor of the
currently selected channel, until a channel is detected that contains DAB data. A third
possibility is to have a continuous scan. The mode can be selected with the combobox.

• modifying the skipTable. When scanning a band, channels, marked with a ”-” in the
skipTable are ignored. Modifying the setting for a channel is by double clicking on the
channel setting in the skipTable. Settings in the skipTable are maintained in the ”.ini”
file.

• selecting another skipTable from a file. Based on user requests a facility is added to
support more than the default skipTable (comes in handy for DX work). Touching
the button will present a menu with which a file, containing a saved skipTable, can be
selected.

• setting the location for the mot slides, by default at the bottom of the technical data,
alternatively in a separate widget.

• while not obvious to everyone, there are different ways to order the list of services. The
widget contains a selector for the ordering.

One addition to version 3.6. was an ”alarm”. The reason is simple: When listening to a
(music) service, I usually forget to switch to my favorite news service in time, so I want an
automatic change to a selected service at a given time.

Operation is simple: touching the ”set time” button will display the current time (hours
and minutes). The alarm can be set by touching the ”set alarm” field in the combobox, which
will make a list of sservices visible from which one service can be selected.

Then, the alarm starts, a small label will be visible on the main widget, and at the selected
time the selected services will be started. Of course, in case the service is in a channel different
from the one active at that time, a channel switch will be performed.

2.5 Colors and coloring

Qt-DAB supports coloring buttons and the various displays. Since it is most likely that others
prefer different colors than I do, a fixed color scheme was not appropriate. A flexible approach
was chosen, one that allows the user to make color settings and changes directly from the
GUI. Obviously, the color settings will be stored in the ”.ini” file and used the next program
invocations.

2.5.1 Colors that can be selected

The set of colors from which one can be selected is defined by the Qt system. The colors are
represented by strings:

white, black, red, darkRed, green, darkGreen, blue,

darkBlue, cyan, darkCyan, magenta, darkMagenta, yellow, darkYellow,

gray, darkGray

16



Figure 15: Qt-DAB: EPG timetable data

2.5.2 Setting the colors of buttons

Since buttons with light colors are best visible with a dark font for the button text, and since
buttons with dark colors are best visible with a light (white) font for the button text, both the
base color of the button and the color of the text can be set. Just click with the right mouse
button on a button, and twice a small menu will appear with the possible colors, the first one
for the base color of the button, the second one for the text color on the button.

2.5.3 Setting the colors in the displays

Similar as for buttons, the colors for the displays can be set from the GUI. Click with the right
mouse button on a display, and - as the picture shows - a selector will appear with a list of the
supported colors. Three times a color has to be selected,

• the display color, for selecting the background color of the scope;

• the grid color, for selecting the color of the grid; and

• the curve color, for selecting the color of the line.

Setting a brush is possible by adding brush=1 in the appropriate section for the widget in
the ”.ini” file. The color settings are kept in the ”.ini” file, in sections resp spectrumViewer,
tiiViewer and correlationViewer.

2.6 EPG Handling

An experimental version of an EPG Handler (Electronic Program Guide) is implemented in
Qt-DAB and can be made part of the configuration. When included, the software will look for
an EPG service in the currently selected channel and run a decoder for it in the background.

17



Whenever time table data can be identified and decoded, it will be attached to the description
of the service involved.

Selecting a service for which time table data is available will cause the software to show
an additional button on the technical data widget, with which time table data can be made
visible.

Note, however, that the software is experimental and - at least here in the Netherlands, the
times mentioned are one or two hours off.

3 Command line parameters and the ini file

While the GUI provides lots of control, some settings can be done via the command line or by
setting values in the ”.ini” file. This ”.ini” file also contains settings recorded by the software.
Its default name and location is .qt-dab.ini and it is kept in the user’s home directory.

3.1 Command line parameters

On starting Qt-DAB via the command line (a few) parameters can be passed:

• ”-i filename” to use the file filename as ”.ini” file rather than the default one ”.qt-dab.ini”
which is stored in the users home directory;

• ”-P portnumber” to use the portnumber as port for TPEG output in the Transparent
Data Channel (tdc), which is - obviously only meaningfull when configured.

• ”-A filename” to use the (name, integer) pairs in the file as channel definitions rather
than the channels in Band IIIs. The sourcetree contains a small file as example: testband.

• ”-T” generate messages while processing on success and misses in the various decoding
steps.

3.2 Settings in the ”.ini” file

Settings are stored in the ”.ini” file. Note that, next to settings made by the user, the software
will store some settings on current selections (e.g, device, channel, service) in the ”.ini” file.
Note that the color settings are discussed in section 8, Here we discuss the settings that cannot
be set or modified from the configuration widget.

• save gainSettings. By default the gain settings per channel are saved in the ”.ini” file.
Since these settings depend on the device, for each device section a setting ”save gainSettings=0”
can be added to ignore previous values for gain setting of that channel when selecting a
channel.

• dabMode: While the default Mode for DAB is Mode 1, Qt-DAB provides the possibility
to use the obsolete Mode 2 or 4 by setting ”dabMode=X” (X in {1, 2, 4});

• dabBand: While the default DAB band is Band III, Qt-DAB provides the possibility to
use the obsolete L Band by setting ”dabBand=L Band”. Note that passing a file with a
band description as parameter overrides specifying the band in the ”.ini” file.

18



• displaySize: While the default setting of the size of the X axis of the spectrum and the
TII display is 1024, setting ”displaySize=xxx” will set the size of the X axis to xxx,
provided xxx is a power of 2;

• saveSlides: While the default is 1, implying that decoded slides are saved, setting ”saveS-
lides=0” will prevent slides to be saved;

• pictures: While the default path for storing slides and pictures is the directory ”qt-
pictures” in the /tmp directory, setting ”pictures=xxx” will use the folder ”xxx” for that
purpose.

• epgPath: While the default value is the empty string, implying that files generated by
the epg handler are not saved, setting ”epgPath=XXX” will use the ”XXX” (if not the
empty string) as path to these files (assuming the path exists and the epg handler is
configured in).

• filePath: While the default value is the empty string, implying that MOT files other than
slides and epg files, are not saved, setting ”filePath=XXX” will use ”XXX” (if not the
empty string) as path to these files (assuming the path exists).

• history: While the default file for storing (and reading back) the history elements is ”.qt-
history-xml” in the users home directory, setting ”history=xxx” will use the file here
denoted as ”xxx”;

• latency: While the default value for the latency, i.e. the delay in handling the audio, and
determining the size of the audio buffers, is 5, setting ”latency=xxx” will set the value
to ”xxx” (if specified as positive number);

• ipAddress: While the default ip address for sending datagrams to (obviously only mean-
ingful if configured) is ”127.0.0.1:, setting ”ipAddress=XXX” will use ”XXX” as ip ad-
dress (if properly specified);

• port: While the default port address for sending datagrams to (obviously only meaningful
if configured) is ”8888”, setting ”port=XXX” will use ”XXX” (if specified as positive
number);

• threshold: While the default value for the threshold is 3, another value can be set by
”threshold=XXX”. The threshold is a value used in the time synchronization. If the
maximum correlation found is at least threshold times the average correlation value, the
maximum is considered to be OK;

• tii delay: While the default value for the number of DAB frames that will be skipped
before recomputing the TII value is 5 (basically to reduce the computational load),
another value can be chosen by setting ”tii delay=XXX”;

Other values in the ”.ini” file are set - and maintained - by the software or can be set
through the configuration widget (e.g. color settings, gain settings, current device, current
channel, service etc etc).

19



4 Supported input devices

Qt-DAB supports a variety of input devices, the Adalm Pluto, the SDRplay, the AIRspy, the
hackrf, the limeSDR and RT2832 based sticks. Furthermore, there is support for the rtl tcp
server, for file input (raw, wav and xml), and for devices for which a Soapy interface library
exists,

Both the appImage and the Windows installer are configured with (almost) the whole
range of devices: SDRplay RSP (different versions for the 2.13 and 3.06/7 library versions),
the Adalm Pluto, the AIRspy, the hackrf, the LimeSDR, and - of course - the RT2832 based
dabsticks.

4.1 The SDRplay RSP

The Qt-DAB software supports all RSP’s from SDRplay. Qt-DAB provides two different device
handlers for the RSP’s, one for devices using the 2.13 SDRplay interface library, the other one
supports devices using the 3.06 and 3.07 SDRplay interface library.

Figure 16: The two control widgets for the SDRplay

As figure 16 shows, the control widgets for the two different versions resemble each other,
their implementations differ considerably though. Both have spinboxes for setting the if gain
reduction, the lna state and a ppm offset.

An optimal value for the ppm offset is to be determined experimentally, the RSP II, as
used here, is happy with a ppm offset 0, the oscillator offset is almost zero in the region of
Band III.

The spinbox for the if gain reduction is programmed to support the range of values between
20 and 59. The range of values for the lna state depends on the model of the RSP. The software
will detect the model and fill in the range accordingly.

If the agc is selected, the if gain reduction spinbox will be hidden, its value is then irrelevant.
The RSP II has two (actually 3) slots for connecting an antenna. If an RSP II is detected,

a combobox will be made visible for antenna selection.
A similar combobox exists for selecting a tuner in the widget for the 2.13 library controller.

The SDRplay duo has two tuners. If the software detects the duo, a combobox will be made
visible for selecting a tuner (note that this feature is not tested, I do not have a duo).

20



Finally, both versions of the control widget contain a dump button. If touched, the raw
input from the connected device will be stored in a so-called xml formatted file. First a menu
is shown for selecting a filename, a suggestion for the name of the file device name - date is
given. Touching the button again will stop dumping and the file will be closed.

4.2 The AIRSpy

Figure 17: Widgets for AIRspy control

The control widget for the AIRspy (figure 17, left) contains three sliders and a push button.
The sliders are to control the lna gain, the mixer gain and the vga gain.

To ease balancing the setting of the sliders, two combined settings are included in the
widget, selectable by the tab sensitivity and linearity. Figure 17 right side, shows the setting
at selecting the tab sensitivity.

Touching the button labeled dump instructs the software to dump the raw stream of samples
into a file in the xml format (Note that while processing DAB requires the samplerate to be
2048000, that rate is not supported by the AIRspy, implying that the driver software has to
do some rate conversion. The xml file though will just contain the samples on the rate before
conversion).

4.3 The hackrf

The control widget for hackrf (figure 18) shows, next to the Serial Number of the device, a few
sliders, a few checkboxes, a spinbox and a push button.

• the sliders are there for controlling the lna and vga gain, the slider values are limited to
the range of possible values;

• The Ant Enable checkbox is for Antenna port Power control (not used in this controller);

• The Amp Enable checkbox is - if enabled - for additional gain on the antenna input;

• the ppm correction spinbox can be set to correct the oscillator (on 227 MHz, the Qt-DAB
software reports an offset of somewhat over 3 KHz);

21



Figure 18: Widget for hackrf control

• the Dump push button when pushed, starts dumping the raw input in xml file format.
Touching the button again will halt the dumping and close the file.

4.4 The LimeSDR

Figure 19: Widget for lime control

On selecting the LimeSDR (if configured), a control widget for the LimeSDR is shown
(figure 19). The widget contains just three controls:

• gain control, with predefined values;

• antennas, where Auto is usually the best choice;

• Dump, if touched, the raw input from the connected device will be written to a file in
the so-called xml format.

4.5 The RTLSDR stick

On selecting the dabstick (i.e. RT2832 based devices) (if configured), a control widget for the
device appears (figure 20).

22



Figure 20: Widget for rtlsdr device

The widget contains just a few controls:

• a spinbox for setting the ppm. Note that on average the offset of the oscillator with
DABsticks is (much) larger than that with devices like the SDRplay. The DAB software
is able to correct frequencies to up to app 35 KHz, for some sticks the frequency error
was large and correction using the ppm setting was required.

• a combobox for setting the gain. The support software for RT2832 based devices generates
a list of allowable gain settings, these settings are stored in the combobox;

• a combobox for setting the autogain on or off;

• a push button that, when touched, will instruct the software to dump the raw input in
the aforementioned xml format. At first a menu appears for selecting a file. Touching
the button again will stop dumping and close the file.

4.6 The Pluto device

When selecting pluto, a widget (figure 21) appears with a spinbox for selecting the gain, and
a checkbox for selecting the agc. If agc is enabled, the spinbox for the gain setting is invisible.
The widget contains furthermore three buttons:

Figure 21: Widget for pluto device

23



• the debug control button, when activated, instructs the software to show output on each
step in the initialization process (note that the setting of the debug button will be
maintained between invocations);

• the dump button will cause the original input - with a samplerate of 2100000 samples
per second7 - to be stored in an xml file.

• the filter button. The adalm pluto has as option specifying a fir-filter, to be executed
within the Pluto device. This implementation of the controller for pluto will load a
predefined filter onto the Pluto device which is enabled by default. With the filter
button the filter can be disabled or enabled. Note that the button text indicates the
action when touching, not the current state.

4.7 Support for Soapy

Soapy is a generic device interface, a kind of wrapper to provide a common interface to a whole
class of devices. Qt-DAB supports Soapy, and its use is tested with the Soapy interface for the
SDRplay.

Figure 22: Widget for soapy

The widget for soapy control (see figure 22) when applied to the Soapy interface for the
SDRplay contains the obvious controls, similar to that of the regular control for the SDRplay.

4.8 File input

Qt-DAB supports both writing raw input files and reading them back. Writing a file as PCM
file is initiated bythe Raw dump button on the main GUI, writing a file as xml file by the dump
button on the various device widgets. Qt-DAB differentiates between reading

7The smallest samplerate that pluto gives is slightly larger than the required 2048000, 2100000 is chosen
since it is easy to handle

24



• raw 8 bit files as generated by e.g. Osmocom software (usually files with an extension
”.raw” or ”.iq”);

• PCM (i.e. ”.wav”) files, provided the data is 2 channels and with a samplerate of 2048000,
generated by Qt-DAB and with an extension ”.sdr”;

• xml files. The xml file format was defined by Clemens Schmidt (author of QIRX) and me
and aims at saving files in the original format, so to allow easy exchange between different
DAB decoder implementations. In order to support proper decoding of the contents, the
data in the file is preceded by a detailed description in xml, hence the name xml file
format.

Figure 23: Widgets for file input

When selecting file input ”.raw” or ”.wav”, a simple widget is shown (figure 23), with as
indication the number of seconds the file is being played.

Since processing an xml file implies some interpretation, the widget (figure 24) for control
when reading an xml file is slightly more complex. It contains - next to the progress in reading
the data - a description of the contents of the file. So, the program that generated the file as
well as the device used in that program are displayed, the number of bits of the samples, as
well as the number of elements is displayed as is the samplerate of recording and the frequency
of the recording.

Figure 24: Widget for xml file input

25



Touching the cont button will instruct the software to restart reading at the beginning of
the segment in the file after reaching the end.

5 Configuring and building an executable

5.1 Introduction

While for both Windows and Linux-x64 there are ready-made executables for installing resp.
executing the Qt-DAB program, there are situations where one wants (or needs) to create its
own version. For e.g. use of the software on an RPI one has to create an executable, for
e.g. using the software with other or non-standard configured devices one has to create an
executable. This section will describe the configuration options and the building process.

5.2 What is there to configure?

The Qt-DAB software can be built using either qmake or cmake generating a Makefile. The
current configuration file for qmake, qt-dab.pro, has more options for configuring than the
configuration file for use with cmake, CMakeLists.txt.

QMake and CMake take a different approach, while the configuration options for use with
qmake requires some editing in the qt-dab.pro file, selecting configuration options with cmake
is ususally through command line parameters.

Note that the qt-dab.pro file contains a section unix and a section win for Windows that
contain settings specific to the OS used. The CMakeLists.txt file is only used for Linux-x64.

5.2.1 Finding the right qwt library (qt-dab.pro only)

It turns out that linking the qwt library sometimes gives problems. While in Fedora based
systems, specifying linkage is as below, i.e. the -lqwt-qt5 is the right one, in Debian based
systems the line -lqwt line should be chosen by commenting out the other one.

#correct this for the correct path to the qwt6 library on your system

#LIBS += -lqwt

LIBS += -lqwt-qt5

5.2.2 Console or not (qt-dab.pro only)

# CONFIG += console

CONFIG -= console

While for tracing and debugging purposes it might be handy to see all the (text) output
generated during execution, for normal use it is not. Including or excluding console in the
configuration determines whether or not a console is present when executing.

5.2.3 Configurable common devices

Configuring devices is simple, for devices as mentioned above as well as for rtl tcp the qt-dab.pro
file and the CMakeLists.txt contain a description. File input (all versions, i.e. raw files, sdr
files and xml files) is by default configured in Qt-DAB executables, changing this is possible,
but implies significant changes to the sources.

26



Using the qt-dab.pro file For configuring devices in the qt-dab.pro file, comment out or
uncomment the line with the devicename.

CONFIG += dabstick

CONFIG += sdrplay-v2

CONFIG += sdrplay-v3

CONFIG += lime

CONFIG += airspy

CONFIG += hackrf

CONFIG += pluto

CONFIG += soapy

CONFIG += rtl_tcp

Note that for soapy, and for limeSDR there is no support in generating a windows exe-
cutable, due to the absence of a suitable dll.

Using the CMakeLists.txt file The CMakeLists.txt file contains support for AIRspy, SDR-
play, SDRplay V3, RTLSDR, Hackrf, pluto and LimeSDR. Including a device in the config-
uration is by adding ”-DXXX=ON” to the command line, where XXX stands for the device
name.

5.2.4 Configuring SSE

In the deconvolution of data, use is made of code generated by the spiral code generator. If
the code is to run on an x86-64 based PC, some speed up can be obtained by using the code
generated for use with SSE instructions. If the code is to run on an RPI, it is - depending
on the configuration - sometimes possible to speed up the process by using ARM specific
instructions. Of course, the compiler used in the building process has to support generating
the right instructions, as fas as known, the Mingw compiler, used for generating the windows
executable, does not.

The qt-dab.pro file contains in the unix section

CONFIG += PC

#CONFIG += RPI

#CONFIG += NO_SSE

Selecting ”CONFIG += PC” selects SSE instructions, and deselects threading of backends
- after all, a standard PC has more than sufficient power to run the decoding in a single thread.

Selecting ”CONFIG += RPI” selects options suitable for having the software run on an
RPI.

Selecting ”CONFIG += NO SSE” is for e.g. Mingw cross compiler for Windows.
When using cmake, pass ”-DVITERBI SSE=ON” as command line parameter for PC’s.

5.2.5 Configuring audio

• When running the Qt-DAB program remotely, e.g. on an RPI near a decent antenna,
one might want to have the audio output sent through an IP port (a simple listener is
available).

27



• Maybe one wants to use the audio handler from Qt.

• The default setting is to use portaudio to send the PCM samples to a selected channel of
the soundcard.

The Linux configuration for the Qt-DAB program offers in the qt-dab.pro file the possibility
of configuring the audio output:

#if you want to listen remote, uncomment

#CONFIG += tcp-streamer # use for remote listening

#otherwise, if you want to use the default qt way of sound out

#CONFIG += qt-audio

#comment both out if you just want to use the "normal" way

If cmake is used, pass ”-DTCP STREAMER=ON” as parameter for configuring the soft-
ware for remote listening, use ”-DQT AUDIO=ON” for qt audio, or do not specify anything
for using portaudio in the configuration.

Note that the configuration for Windows is only for ”portaudio”.

5.2.6 Configuring TPEG in the tdc

Handling TPEG in the tdc is only partially supported. Interpretation of the data is not part
of the Qt-DAB software, however, the software can be configured to extract the TPEG frames
and send these to an IP port.

In the qt-dab.pro file, we have

#very experimental, simple server for connecting to a tdc handler

CONFIG += datastreamer

In cmake the parameter ”-DDATA STREAMER=ON” can be passed to include handling
TPEG as described in Qt-DAB.

5.2.7 Configuring IP datastream (qt-dab.pro only)

IP data can be extracted from the DAB stream and send out through an IP port.

#to handle output of embedded an IP data stream, uncomment

CONFIG += send_datagram

Note that - if not specified in the ini file - defaults are used for ip address and port.

5.2.8 Selecting an AAC decoder

By default the faad library is used to decode AAC and generate the resulting PCM samples.
It turns out that both Ubuntu 20 and Fedora 32 install - by default - the libfaad-2.9 which is
not compatible with the DAB+ output.

The source tree contains - in the directory specials, the sources for the libfaad-2.8 version.
It is quite simple to create and install an appropriate library.

28



An alternative is to use the fdk-aac library to decode AAC (contrary to the libfaad the
fdk-aac library is able to handle newer versions of the AAC format, these newer versions are
not used in DAB (DAB+)).

Selecting the library for the configuration is by commenting out or uncommenting the ap-
propriate line in the file qt-dab.pro (of course, precisely one of the two should be uncommented).

CONFIG += faad

#CONFIG += fdk-aac

(see the subsection for installing the libraries).

5.2.9 Configuring for platforms

Processing DAB (DAB+) requires quite some processing power. On small computers like an
RPI2, performing all processing on a single CPU core overloads the core.

In order to allow smooth processing on multi core CPU’s, an option is implemented to
partition the workload. In order to partition processing, uncomment

DEFINES += __THREADED_BACKEND

DEFINES += __MSC_THREAD__

in the qt-dab.pro file.
In case cmake is used, edit the file CMakeLists.txt and comment out or uncomment the

line

#add_definitions (-D__THREADED_BACKEND) # uncomment for use for an RPI

#add_definitions (-D__MSC_THREAD__) # uncomment for use for an RPI

It is recommended to use

CONFIG += PC

in the qt-dab.pro file, when targeting towards a standard x64 based PC running Linux, using
this will set the SSE and the threading.

It is recommended to use

CONFIG += RPI

in the qt-dab.pro file when targeting for an RPI, the threading will be set and the NO SSE
option is set.

5.2.10 Configuring EPG processing

By default MOT data with EPG data is not dealt with. The Qt-DAB sourcetree contains
software from other sources that can be used to decode EPG and write the decoded data into
a file in xml format.

In order to configure the software to include the epg handling part uncomment

CONFIG += try-epg

in the qt-dab.pro file, or add

-DTRY_EPG=ON

to the command line when using cmake.

29



5.3 Preparing the build: loading libraries

5.3.1 Installing the libraries

Prior to compiling, some libraries have to be available. For Debian based systems (e.g. Ubuntu
for PC and Stretch for the RPI) one can load all required libraries with the script given below.

sudo apt-get update

sudo apt-get install git cmake

sudo apt-get install qt5-qmake build-essential g++

sudo apt-get install pkg-config

sudo apt-get install libsndfile1-dev qt5-default

sudo apt-get install libfftw3-dev portaudio19-dev

sudo apt-get install zlib1g-dev rtl-sdr

sudo apt-get install libusb-1.0-0-dev mesa-common-dev

sudo apt-get install libgl1-mesa-dev libqt5opengl5-dev

sudo apt-get install libsamplerate0-dev libqwt-qt5-dev

sudo apt-get install qtbase5-dev

If libfaad is the selected aac decoder, install

sudo apt-get install libfaad-dev

If fdk-aac is the selected aac decoder, install

sudo apt-get install libfdk-aac-dev

5.3.2 Downloading of the sourcetree

Since the script also loads git, the sourcetree for Qt-DAB (including the sources for dab-mini)
can be downloaded from the repository by

git clone https://github.com/JvanKatwijk/qt-dab.git

The command will create a directory qt-dab.

5.3.3 Installing support for the Adalm Pluto

The Pluto device uses the iio protocol. Support for Pluto is by including

sudo apt-get install libiio-dev

and - to allow access for orinary users over the USB - ensure that the user name is member
of the pugdev group, and create a file ”53-adi-plutosdr-usb.rules” is in the ”/etc/udev/rules”
directory.

#allow "plugdev" group read/write access to ADI PlutoSDR devices

# DFU Device

SUBSYSTEM=="usb", ATTRS{idVendor}=="0456", ATTRS{idProduct}=="b674",

MODE="0664", GROUP="plugdev"

SUBSYSTEM=="usb", ATTRS{idVendor}=="2fa2", ATTRS{idProduct}=="5a32",

MODE="0664", GROUP="plugdev"

# SDR Device

SUBSYSTEM=="usb", ATTRS{idVendor}=="0456", ATTRS{idProduct}=="b673",

MODE="0664", GROUP="plugdev"

SUBSYSTEM=="usb", ATTRS{idVendor}=="2fa2", ATTRS{idProduct}=="5a02",

MODE="0664", GROUP="plugdev"

30



# tell the ModemManager (part of the NetworkManager suite) that

# the device is not a modem,

# and don’t send AT commands to it

SUBSYSTEM=="usb", ATTRS{idVendor}=="0456", ATTRS{idProduct}=="b673",

ENV{ID_MM_DEVICE_IGNORE}="1"

SUBSYSTEM=="usb", ATTRS{idVendor}=="2fa2", ATTRS{idProduct}=="5a02",

ENV{ID_MM_DEVICE_IGNORE}="1"

5.3.4 Installing support for the RTLSDR stick

It is advised - when using an RT2832 based ”dab” stick - to create the library for supporting
the device

git clone git://git.osmocom.org/rtl-sdr.git

cd rtl-sdr/

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON -DDETACH_KERNEL_DRIVER=ON

make

sudo make install

sudo ldconfig

cd ..

rm -rf build

cd ..

5.3.5 Installing support for the AIRspy

If one wants to use an AIRspy, a library can be created and installed by

wget https://github.com/airspy/host/archive/master.zip

unzip master.zip

cd airspyone_host-master

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON

make

sudo make install

sudo ldconfig

cd ..

rm -rf build

cd ..

5.3.6 Installing support for SDRplay RSP

If one wants to use an RSP from SDRplay, one has to load and install the library from
”www.SDRplay.com”.

5.3.7 Making the installed libraries visible

The installation of these device handlers will install libraries in the

/usr/local/lib

31



directory. Note that the path to this directory is NOT standard included in the search paths
for the Linux loader. To add this path to the searchpaths for the Linux loader, create a file

/etc/ld.so.conf.d/local.conf

with as content

/usr/local/lib

The change will be effective after executing a ”sudo ldconfig” command.
The installation of these device handlers will furthermore install some files in the

/etc/udev/rules.d

directory. These files will ensure that a non-root user has access to the connected device(s).
Note that in order for the change to be effective, the udev subsystem has to be restarted.

The easiest way is just to reboot the system.

5.4 Finally: building an executable

5.4.1 Using cmake to build the executable

After installing the required libraries, and after editing the configuration (if required), compil-
ing the sources and generating an executable is simple.

Using cmake, creating an executable with as devices the SDRplay, the AIRspy, and the
RTLSDR based dabsticks, the following script can be used:

cd qt-dab/dab-maxi

mkdir build

cd build

cmake .. -DSDRPLAY=ON -DPLUTO=ON -DAIRSPY=ON -DRTLSDR=ON ... -DRTL_TCP=ON

make

The CMakeLists.txt file contains instructions to install the executable in ”/usr/local/bin”.

sudo make install

cd ..

cd ..

5.4.2 Using qmake to build the executable

Assuming the file qt-dab.pro is edited, the same result can be obtained by

cd qt-dab/dab-maxi

qmake

make

In some Linux distributions replace qmake by qmake-qt5!
The qt-dab.pro file contains in both the section for unix as for windows a line telling where

to put the executable

DESTDIR = ./linux-bin

By default in Linux the executable is placed in the ./linux-bin director in the qt-dab direc-
tory.

32



6 Adding support for a device

Qt-DAB is an open source project. Anyone is invited to suggest improvements, to improve the
code and to add code for e.g. yet unsupported devices.

While Qt-DAB can be configured for the devices I have access to, there is obviously a
multitude of other devices that are worthwhile to be used with Qt-DAB.

6.1 The Qt-DAB device interface

The Qt-DAB software provides a simple, well-defined interface to ease interfacing a different
device.

The interface is defined as

class deviceHandler: public QObject {

public:

deviceHandler (void);

virtual ~deviceHandler (void);

virtual int32_t getVFOFrequency (void);

virtual int32_t defaultFrequency(void);

virtual bool restartReader (int32_t);

virtual void stopReader (void);

virtual int32_t getSamples (std::complex<float> *, int32_t);

virtual int32_t Samples (void);

virtual void resetBuffer (void);

virtual int16_t bitDepth (void);

virtual void show ();

virtual void hide ();

virtual bool isHidden ();

virtual QString deviceName ();

private:

int32_t lastFrequency;

};

A device handler for a - yet unknown - device should implement this interface.
A description of the interface elements follows

• getVFOFrequency returns the current oscillator frequency in Hz;

• defaultFrequency returns a frequency in the range of valid frequencies;

• restartReader is supposed to start or restart the generation of samples from the device.
Note that while not specified explicitly the assumed samplerate is 2048000, with the
samples filtered with a bandwidth of 1536000 Hz. The parameter - in Hz - indicates the
frequency to be selected. restartReader when already running should have no effect.

• stopReader will do the opposite of restartReader, collecting samples will stop; stopReader
when not running has no effect.

• getSamples is the interface to the samples. The function should provide a given amount
of samples, the return value is the number of samples actually read.

33



• Samples tells the amount of samples available for reading. If the Qt-DAB software needs
samples, the function Samples is continuously called (with the delay between the calls)
until the required amount is available, after which getSamples is called.

• resetBuffer will clear all buffers. The function is called on a change of channel.

• bitDepth tells the number of bits of the samples. The value is used to scale the Y axis in
the various scopes and to scale the input values when dumping the input.

• deviceName returns a name for the device. This function is used in the definition of a
proposed filename for dumps.

• The GUI contains a button to hide (or show) the control widget for the device. The
implementation of the control for the device will implement - provided the control has
a widget - functions to show and to hide the widget, and isHidden, to tell the status
(visible or not).

6.2 What is needed for another device

Having an implementation for controlling the new device, the Qt-DAB software has to know
about the device handler. This requires adapting the configuration file (here we take qt-
dab.pro) and the file radio.cpp, the main controller of the GUI.

Modification to the qt-dab.pro file Driver software for a new device, here called newDe-
vice, should implement a class newDevice, derived from the class deviceHandler.

It is assumed that the header is in a file new-device.h, the implementation in a file new-
device.cpp, both stored in a directory new-device.

A name of the new device e.g. newDevice will be added to the list of devices, i.e.

CONFIG += AIRSPY

...

CONFIG += newDevice

Next, somewhere in the qt-dab.pro file a section describing XXX should be added, with as
label the same name as used in the added line with CONFIG.

newDevice {

DEFINES += HAVE_NEWDEVICE

INCLUDEPATH += ./devices/new-device

HEADERS += ./devices/new-device/new-device.h \

.. add further includes to development files, if any

SOURCES += ./devices/new-device/new-device.cpp \

.. add further implementation files, if any

FORMS += ./devices/new-device/newdevice-widget.ui

LIBS += .. add here libraries to be included

}

34



Modifications to radio.cpp The file ”radio.cpp” needs to be adapted in three places

• In the list of includes add

#ifdef HAVE_NEWDEVICE

#include new-device.h

#endif

• The names of selectable devices are stored in a combobox. So, in the neighborhood of

#ifdef HAVE_AIRSPY

deviceSelector -> addItem ("airspy");

#endif

#ifdef HAVE_NEWDEVICE

deviceSelector -> addItem ("newDevice");

#endif

is added.

• If selected, the class implementing the device handler should be instantiated, so, in the
direct environment of

#ifdef HAVE_AIRSPY

if (s == "airspy") {

try {

inputDevice = new airspyHandler ....

....

#endif

#ifdef HAVE_NEWDEVICE__

if (s == "newDevice") {

try {

inputDevice = new newDevice (..parameters..);

showButtons ();

}

catch (int e) {

QMessageBox::warning (this, tr ("Warning"),

tr ("newDevice not found\n"));

return nullptr;

}

}

else

#endif

is added.

6.3 Linking or loading of device libraries

The approach taken in the implementations of the different device handlers is to load the
required functions for the device library on instantiation of the class. This allows execution of
an executable even on systems where some device libraries are not installed.

The different existing drivers can be used as example if there is a need to implement the
dynamic loading feature. Obviously, if an executable is generated for a target system that does
have the library for the device installed, there is no need to dynamically load the functions of
that library.

35



7 dabMini

7.1 Why a dabMini

I often run a DAB decoder(s) on an RPI2 or 3. Since these RPIs are headless, control (and
often the sound) is from my laptop. Sometimes I find the GUI of Qt-DAB too large, especially
when my only concern is to listen to the audio. In that case I do not need any of the push
buttons and the comboboxes on the main GUI widget, nor the additional widgets.

While I was using dabRadio for that purpose (or sometimes qml-dab), I realised that most
of the corrections and changes that were applied to the sources - quite many - of Qt-DAB were
not applied to the sources of these programs.

So, in order to maintain consistency of sources between Qt-DAB and a version with a small
GUI I designed and implemented dabMini by using the Qt-DAB sources. To ensure consistency,
a subdirectory was made in the Qt-DAB sources containing the (few) files special for use with
this dabMini. Interesting is that - next to changes to device handlers to accomodate for the
demise of the device control widgets - only 2 files needed to be changed.

7.2 The GUI

Figure 25: dabMini

As picture 25 shows, the GUI is minimal. The device control is at the top right. Depend-
ing on the selected device, one or two spinboxes (usually some LNA setting and some other
gain (reduction) setting) are shown together with a checkbox for the agc. dabMini will - on
program start up - look for any of the configured devices being connected, and use the first
one encountered.

To the right of the service list, a channel selector is available, with a < (previous) and a >
(next) button for easy scanning though the channels, and, below these, a < (previous) and >

36



(next) button for easy scanning though the services in the service list. Below these buttons,
there is the audio channel selector, set by default on default.

The bottom of the GUI contains the so-called dynamic Label, a large comboboxes labeled
Presets, a stereo indicator and a button labeled mute.

Presets Presets are implemented as in Qt-DAB, i.e. touching a selected service in the service
list with the right mouse button will add the ”channel:name” pair describing the service to the
preset list. Selecting a preset service is by touching the service in the service list with the left
mouse button. Removing a service from the preset list is by putting the cursor on the name
of the service in the list of presets, and pressing the shift and delete button on the keyboard
simultaneously.

Stereo indicator Based on some user requests, a stereo indicator was re-introduced.

Mute Based on a user request, a mute button was added, the button - when touched - will
mute the audio output for a number of seconds. Touching the button when muting is on, will
unmute the sound. Default value is 10 seconds, the value can be changed by setting a value
”muteDelay=xxx” in the ini file, xxx indicates the number of seconds.

Touching the mute button when sound is muted will end muting.

7.3 dabMini on Windows

While it is certainly possible to download the sources and build an executable for windows, the
releases section of the Qt-DAB repository (https://github.com/JvanKatwijk/qt-dab/releases)
contains an installer for dabMini though.

7.4 dabMini on x64 Linux

An appImage for dabMini, configured with the whole range of devices, is available on the
Qt-DAB repository.

7.5 Building an executable on Linux and RPI

As an example, loading libraries and building an executable of the program on an RPI (running
Buster) is described here.

7.5.1 Installing the libraries

For e.g. the RPI running Buster, the following lines will install all required libraries

sudo apt-get update

sudo apt-get install git cmake

sudo apt-get install qt5-qmake build-essential g++

sudo apt-get install pkg-config

sudo apt-get install libsndfile1-dev qt5-default

sudo apt-get install libfftw3-dev portaudio19-dev

sudo apt-get install libfaad-dev zlib1g-dev rtl-sdr

sudo apt-get install libusb-1.0-0-dev mesa-common-dev

37



sudo apt-get install libgl1-mesa-dev libqt5opengl5-dev

sudo apt-get install libsamplerate0-dev

sudo apt-get install qtbase5-dev

Note that on other platforms libraries might be named in another way.
Assuming the only device that needs support is an RT2832 based stick, execute the lines

from the following script

git clone git://git.osmocom.org/rtl-sdr.git

cd rtl-sdr/

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON -DDETACH_KERNEL_DRIVER=ON

make

sudo make install

sudo ldconfig

cd ..

rm -rf build

cd ..

Assuming support for Pluto is wanted, then install

sudo apt-get install libiio-dev

(see section 5.3.6 for some comments on making the device visible).

7.5.2 Download the sourcetree for Qt-DAB

Dowload the sourcetree for Qt-DAB from the repository

git clone https://github.com/JvanKatwijk/qt-dab.git

7.5.3 Generate an executable

The settings in the file CMakeLists.txt are such that no changes are needed, just execute
the lines from the following script (with the selected device(s)) (the ”make” will take app 10
minutes on an RPI 3) to build and install an executable. As an example, constructing and
installing an executable of dabMini-2.0, configured for Dabsticks, Pluto and the 2.13 support
library for the SDRplay RSP, we need

cd qt-dab

cd dab-mini

mkdir build

cd build

cmake .. -DRTLSDR=ON -DPLUTO=ON -DSDRPLAY=ON

make

sudo make install

cd ..

cd ..

8 Acknowledgements

Qt-DAB and derived programs are written and maintained by me. The software is provided
as is, and made available under the Gnu GPL V2 license.

Many people contributed (and contribute) by providing feedback, suggestions and code
fragments, in particular:

38



• Andreas Mikula, for continuous feedback, testing and suggestions;

• Stefan Pöschel, for providing code for and giving suggestions to handling the AAC code;

• Stuart Langland, for its comments, suggestions and code contributions;

• probonopd, for its contribution with creating appImages;

• Przemyslaw Wegrzyn, for contributing code for handling charsets;

• Paul Howard-Beard, for his enthousiastic experiments with new features, comments and
his suggestion to add features like a mute button, the per channel gain settings, and
alarm; and

• Herman Wijnants, for his continuous enthousiastic feedback on and suggestions for the
Windows version of Qt-DAB.

Furthermore I am grateful

• to SDRplay ltd (Andy Carpenter), for providing me the possibility to use the Ia and II
versions of the SDRplay RSP devices, all wonderful devices;

• to Benjamin Vernoux, for making an AIRSPY device available;

• to Great Scott Gadgets, for making an HACKRF device available;

• to Jan Willem Michels, for making a LimeSDR device available, and

• to Olaf Czogalla, for donating an RT2832 based stick after having lively discussions on
TPEG.

• to Robin Getz (Analog Devices), for making an Adalm Pluto available, a device with
lots of possibilities, still to discover.

Qt-DAB is developed as hobby program in spare time. Being retired I do have (some) spare
time and programming Qt-DAB (and my other programs) is just hobby. Contributions are
always welcome, especially contributions in the form of feedback and additions and corrections
to the code, but obviously also in the form of equipment that can be used.

If you consider a financial contribution, my suggestion is to support the red cross or your
local radio amateur club instead.

39


