Decoupled / Event Driven Architecture:

Old Monolithic:
· Tightly coupled
· Built in dependencies

Decoupled:
· Built using independent components that can operate and execute independently
· Communicate using specific, defined, interfaces
· Simplifies innovation as changes to one component should not impact others

Event Driven:
· Services in event driven infrastructure driven by events / changes
· Producer – Event Router – Consumer(s)
· Event Router decouples Producer from Consumer(s)

SQS: Simple Queue Service
· Handles deliver of messages between components
· Fully managed service
· Can send / store / receive messages at scale without dropping data
· Possible to configure using AWS Mgmt / AWS CLI / AWS SDKs

SQS Components:
· 3 elements
· Queue managed by SQS
· Producer sends messages to queue
· SQS stores across multiple queues (resilience)
· Consumers responsible for processing messages from queue
· Visibility timeout ensures same message not sent to multiple consumers
· When message received consumer starts visibility timeout – consumer sends delete message when completed processing of message
· If timeout occurs message appears as new message on queue
· Queue Types:
· Standard Queues – default / once delivery of messages / offers best effort for ordering / almost unlimited messages / sec
· FIFO Queues – guarantee ordering / no duplication – exactly once processing / 300 transactions per second default (send / receive / delete) / batching raises this to 3000
· Dead-Letter Queues – send messages that fail processing (corruption / code issues / missing info) / If message fails to be processed X times, by consumer, message goes onto dead-letter queue / must be configured same type as associated queue (standard or fifo)

SSE == Server Side Encryption
CMK == Customer Master Key

SNS: Simple Notification Service
· Centred around topics
· Users / endpoints subscribe to topics
· When a message is published all subscribers to that topic receive
· Manage / highly scalable
· Configured via AWS Mgmt / AWS CLI / AWS SDK

Concept of publishers and subscribers

Subscribers can receive via: HTTP(S) / EMAIL / EMAIL-JSON / SQS / APPLICATION / LAMBDA / SMS

Allow control of access via Topic Policy – access methods / users

SNS & SQS integrate with each other.
SNS: Push
SQS: Pull for subscribers
e.g. SNS as producer for SQS queue

SNS & Lambda integrate with each other.
SNS notifications invoke existing Lambda functions
Function uses payload of message as input parameter

Stream Processing:
Batch Processing pre-dated stream processing
· Data collected / stored /analysed on regular schedule

Stream Processing appropriate for data which must be processed within a short time – data loses value over time.
· Latency
· Value of data over time

Batch processing can spread sessions across sessions – making analysis difficult
Batch processing only starts when enough data waiting

Acting on / reacting to data as it is received

3 parts:
· Producers
· Data Stream
· Consumer(s)

Benefits:
· Handles “never-ending” stream of events
· Streams “flow with time”
· Minimal lag time – between events and reactions
· Reduces need for large (expensive) shared databases
· Fits well within micro-service environment

Amazon Kinesis:
Simplifies:
· Connect
· Process
· Analyse
data in realtime

Data in transit protected using TLS

4 services:
· Video Streams – binary encoded data
· Designed to stream binary-encoded data into AWS
· AWS SDKs enable secure streaming
· Supports open source WebRTC
· Data Streams – bas64 encoded data
· Customisable streaming solution
· Ingestion / monitoring / scalable (no auto scaling)
· APIs / AWS SDKs / AWS CLI / AWS Kinesis Agent / Kinesis Producer Library / Kinesis Client Library
· Set of shards – shard == sequence of records / record contains sequence #, partition key, data blob
· Stream Storage layer – immutable 1-365 days expiry / after 7 days billed GB/month
· Classic subscribers pull (poll)
· Enhanced Fan Out is push method – shard limits are removed / 2Mbit/sec
· Data Firehose – ditto
· Streaming delivery service
· Ingested data dynamically transformed / scaled automatically / automatically delivered to data store
· Buffers data prior to delivery – buffer interval / size 60-900 secs
· Data Stores: S3 / Redshift / ElasticSearch / Splunk / HTTP
· Can invoke Lambda functions to (for example) reformat
· Costs only incurred when data in stream – no charge for provision
· Data Analytics – ditto
· Reads stream in realtime and do aggregation and analysis while data in motion
· SQL or Apache Flink
· Only query with SQL
· Built in templates and operators
· ETL = extract transform load

Pricing:
· No free tier
· Based on volume of data
· Data retention charged
· Enhanced fan out changes cost basis

KPU = Kinesis Processing Unit

Layers of streaming:
· Source
· Ingestion	Producer
· Storage	
· Processing	Consumers
· Destination	Storage (S3 …)

Data records immutable once in Data Stream

Streaming Framework:
Kinesis collection of parts to allow processing of data in realtime (or near)

Data is immutable – if change required new record must be added

Challenges:
· Historically high touch / difficult to automate
· High number of moving parts tend to be brittle
· Expensive
· Scaling issues

Kinesis is a managed service.

Architecture Basics:
· LAMP	Common tool stack used for building web-services
· Linux
· Apache
· MySQL
· PHP programming language
· MEAN	Evolving stack pattern
· Mongo DB
· Express JS
· Angular JS
· Node JS
· SERVERLESS	Beneficial in multi-tiered
· Amazon API Gateway
· AWS Lambda
· MICROSERVICES
· Not so tied to notion of tiered

Multi-tiered:	Layers separated
· User
· Presentation tier
· Logic Tier
· Data tier
Decoupled architecture components can be easily implemented and maintained

Availability Zone	Distinct data centres geographically diverse

Multi-Tier Design:
Tiers are logically separated
Each layer can be independently scaled

When Single-Tier:
Everything in one tier / often on one machine
Ideal for simple non-customer facing / DEV
Does not decouple layers – makes scaling more complicated

Designing Multi-Tier:
VPC	Virtual Private Cloud
· Single public subnet
· Private and public subnets
· Public and private subnets with VPN access
· More than one AZ – up to 4 depending on region

Internet Gateway is “doorway” to public subnet
Public subnet needs route to Internet Gateway
Security Groups control access to resources (instance level)
Network ACLs control access to subnet
Independent routing tables required for every private subnet

Connectivity within VPC:
Can assign public (Elastic) IP to instance – allows instance to access internet
Instances without EIP can route via NAT Gateway – allows talking outbound

NAT Gateway vs NAT Instance
Gateways more available – managed service

VPN Gateway (VPG)

Remember to leave address space to allow scaling

Serverless Architecture:
AWS Lambda / Amazon API Gateway
AWS Lambda can have Elastic Network Interface (ENI) to allow access to data store in private subnet

AWS Secrets Manager

Microservice Design Pattern:

Exam Prep:

Network Load Balancer – level 4
Application Load Balancer – level 7

Credentials	AWS Secrets Manager

CloudFront

AWS CloudTrail – record API calls
AWS Config – track config changes

SQS / SNS great for decoupling

Can auto-scale based on SQS queue depth

Migrate to RDS if system slow due to heavy read access
Also consider ElastiCache (read only)

EKS – supports CRI-O containers
Fargate – supports less customisation
ECS – does not support proprietary container provision

